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ABSTRACT

Working in pressureless magnetohydrodynamics, we examine the consequences of some peculiar
dispersive properties of linear fast sausage modes (FSMs) in one-dimensional cylindrical equilibria
with a continuous radial density profile (ρ0(r)). As recognized recently on solid mathematical grounds,
cutoff axial wavenumbers may be absent for FSMs when ρ0(r) varies sufficiently slowly outside the
nominal cylinder. Trapped modes may therefore exist for arbitrary axial wavenumbers and density
contrasts, their axial phase speeds in the long-wavelength regime differing little from the external
Alfvén speed. If these trapped modes indeed show up in the solutions to the associated initial
value problem (IVP), then FSMs have a much better chance to be observed than expected with
classical theory, and can be invoked to account for a considerably broader range of periodicities than
practiced. However, with axial fundamentals in active region loops as an example, we show that this
long-wavelength expectation is not seen in our finite-difference solutions to the IVP, the reason for
which is then explored by superposing the necessary eigenmodes to re-solve the IVP. At least for the
parameters we examine, the eigenfunctions of trapped modes are characterized by a spatial extent
well exceeding the observationally reasonable range of the spatial extent of initial perturbations,
meaning a negligible fraction of energy that a trapped mode can receive. We conclude that the
absence of cutoff wavenumbers for FSMs in the examined equilibrium does not guarantee a distinct
temporal behavior.
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waves
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1. INTRODUCTION

There have been abundant observational instances of low-frequency waves and oscillations in the
structured solar corona (see, e.g., the reviews by Banerjee et al. 2007; De Moortel & Nakariakov
2012; Wang 2016; Nakariakov et al. 2016). Combined with magnetohydrodynamic (MHD) wave the-
ory, these observations can help deduce the atmospheric parameters that prove difficult to directly
measure, thereby constituting the field of “coronal seismology” (see e.g., the reviews by Nakariakov
& Verwichte 2005; Nakariakov & Kolotkov 2020; also the textbook by Roberts 2019). Evidently, a
physical interpretation needs to be assigned to an observed oscillatory signal for it to be seismologi-
cally exploited. For this purpose, it has been customary to contrast observations with the theoretical
expectations for waves in field-aligned cylinders that are structured only in the radial direction and in
a step form (developed by e.g., Wentzel 1979; Spruit 1982; Edwin & Roberts 1983, hereafter ER83;
also Zajtsev & Stepanov 1975; Cally 1986). It turns out that this apparently simple equilibrium
supports a rich variety of waves, and we restrict ourselves to the fast family (see Wang et al. 2021,
for the most recent review on the slow family). Indeed, radial fundamental kink modes in the sense
of Goossens et al. (2009, 2012) have been amply identified and put to seismological practice (see
the review by Nakariakov et al. 2021). As an outcome, the spatial variations of the magnetic field
strength were deduced not only for individual active regions (ARs, Anfinogentov & Nakariakov 2019)
but also over a substantial fraction of the lower corona (Yang et al. 2020).

Candidate fast sausage modes (FSMs), however, have only been sporadically reported in coronal ob-
servations (see Li et al. 2020, for the most recent review). As detailed therein, this rarity is intimately
connected to the cutoff axial wavenumbers kcutoff , to explain which it suffices to consider the pressure-
less MHD. In fact, we will adopt pressureless MHD throughout, and additionally restrict ourselves to
flare loops and AR loops as wave-guiding inhomogeneities 1. Let R denote the cylinder radius, and
ρi (ρe) the internal (external) density with ρi > ρe. Likewise, let vAi (vAe) represent the internal (ex-
ternal) Alfvén speed. Standard analysis of the eigenvalue problem (EVP) on a laterally open domain
then yields that FSMs in an ER83 equilibrium possess a series of kcutoff,m = j0,m/(R

√
ρi/ρe − 1),

where j0,m is the m-th zero of Bessel J0 with m = 1, 2, · · · (e.g., Roberts et al. 1984; Vasheghani
Farahani et al. 2014). Now consider an open system unbounded in both the axial (z) and radial
(r) directions, and suppose that a cylinder is perturbed by an axisymmetric perturbation localized
both radially and axially. The pertinent two-dimensional initial value problem (2D IVP) has been
examined rather extensively, with the majority of solutions found by directly evolving the MHD
equations (e.g., Shestov et al. 2015; Yu et al. 2016a, 2017). Physical insights, on the other hand, can
also be gleaned from a modal approach, which was discussed heuristically by Edwin & Roberts (1986)
and made more formal by Berghmans et al. (1996). Our study makes frequent reference to Oliver
et al. (2015, hereafter ORT15), who were the first to offer an explicit expression for the solution to
the 2D IVP. Noting that a continuous range of axial wavenumbers (k) is involved, Equation (25) in
ORT15 expresses the solution as the summation of the contributions associated with an individual
k, which in turn were written as the superposition of eigenmodes with individual angular frequencies
(ω, hereafter “frequency” for brevity). A finite number of discrete ω pertaining to proper eigenmodes

1 Sausage perturbations in flare current sheets have also been invoked to account for, say, some fine structures in
decimetric type IV radio bursts (Karlický et al. 2011; Jeĺınek & Karlický 2012; also Li et al. 2020 and references therein).
We refrain from discussing such observations to avoid the intricacies that cannot be addressed with pressureless MHD.
In fact, we decide to leave out sausage modes in slab-type configurations altogether for the ease of description, even
though they have been extensively examined (e.g., Murawski & Roberts 1993; Nakariakov et al. 2004; Pascoe et al.
2013; Yu et al. 2016b; Kolotkov et al. 2021). The approach we are to use, however, is sufficiently general.
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(or “trapped modes” in physical terms) are relevant only when k > kcutoff,1, whereby the periodicity
is consistently . 2π/(kcutoff,1vAe) ≈ 2.6

√
1− ρe/ρi(R/vAi) < 2.6R/vAi. Regardless of k, however,

a continuum of improper eigenmodes is always involved, the associated ω extending from kvAe out
to infinity. The point is, only proper modes survive in the sausage wavetrains sampled sufficiently
far from the exciter, the characteristic periodicities therefore being similar to the transverse Alfvén
time R/vAi. If an individual k is examined as happens for standing modes, then one finds by di-
rectly evolving the MHD equations that R/vAi consistently characterizes FSMs regardless of k (e.g.,
Terradas et al. 2007; Nakariakov et al. 2012; Guo et al. 2016; Lim et al. 2020). While this result is
much expected for k > kcutoff,1, its physical understanding for the opposite situation is a bit involved
given the likely contributions due to improper modes with ω not far exceeding kvAe (ORT15, see also
our Appendix A). The quick answer is that, the interference of the improper modes tends to make
their superposition favor a discrete set of periods Pleaky that pertain to the so-called “leaky modes”
(Andries & Goossens 2007, and references therein), and Pleaky is well known to be either similar to
or substantially shorter than 2π/(kcutoff,1vAe) (e.g., Meerson et al. 1978; Cally 1986; Kopylova et al.
2007). The damping time of the discrete leaky modes (τleaky) is also known to offer a shortcut estimate
for the timescale characterizing the wave attenuation, the result being that τleaky/Pleaky ≈ (ρi/ρe)/π

2

(e.g., Kopylova et al. 2007). Two primary reasons are now clear to account for the rarity of candidate
coronal FSMs. First, R/vAi typically evaluates to at most a couple of tens of seconds, thereby de-
manding a high instrumental cadence and ruling out the possibility for typical (extreme) ultraviolet
instruments to resolve an FSM (see Su et al. 2012; Tian et al. 2016, for exceptions). Second, there
tends to be a stringent requirement on instrumental sensitivity as well. For AR loops, that they
are thin and tenuous means that FSMs tend to be detectable only as wavetrains, which are indeed
compatible with a number of high-cadence ground-based measurements in visible light during total
eclipses (e.g., Williams et al. 2002; Katsiyannis et al. 2003; Samanta et al. 2016). For flare loops, that
they are thick and dense means that FSMs have a better chance to be detected both as wavetrains
and standing modes, provided once again that the instrumental cadence is sufficient (see Li et al.
2020, and references therein). This explains why candidate coronal FSMs reported so far have been
primarily connected to radio measurements of short-period quasi-periodic pulsations (QPPs, see the
recent reviews by McLaughlin et al. 2018; Zimovets et al. 2021).

With the ER83 equilibrium apparently idealized, one may argue that cutoff wavenumbers are not
inherent to coronal FSMs in reality. Indeed, there have been a considerable number of theoretical
studies that extend ER83 by incorporating various aspects of reality (see Li et al. 2020, and references
therein). Among these, we focus on the equilibria that differ from ER83 only by replacing the step
density profile with a continuous one, the reason being that a generic guiding principle can be
established to tell when cutoff wavenumbers exist (Lopin & Nagorny 2015a, hereafter LN15; also
Lopin & Nagorny 2015b). Let R now refer to some mean cylinder radius, and let the subscript i
(e) refer to the equilibrium quantities at the cylinder axis (infinitely far from the cylinder). The
radial profile for the equilibrium density ρ0(r) can then be described in a generic form ρ0(r) =
ρe + (ρi − ρe)f(r), where the function f(r) evaluates to unity (zero) when r = 0 (r → ∞). Restrict
ourselves to the case where f(r) is monotonical. With Kneser’s oscillation theorem, LN15 were the
first to point out that cutoff wavenumbers exist only when r2f(r) does not diverge when r approaches
infinity. This expectation was then verified numerically by Li et al. (2018), one example being for the
so-named “outer µ” profile where f(r) is identically unity for r < R but of the form (r/R)−µ otherwise.
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Figure 8 therein indicates that for the m-th radial harmonic (m = 1, 2, · · · ), no cutoff wavenumber
exists (or equivalently kcutoff,m = 0) when µ < 2, whereas the combination (kcutoff,mR)

√
ρi/ρe − 1

increases monotonically from unity for µ = 2 to j0,m for a step profile (µ =∞).
Some important consequences arise for FSMs when cutoff wavenumbers are absent. Theoretically,

the dispersive properties of FSMs in this situation are distinct from FSMs in ER83 in two aspects, one
being that trapped modes are allowed regardless of the axial wavenumber k or the density contrast
ρi/ρe, and the other being that FSMs tend to be weakly dispersive for small k with axial phase speeds
only marginally smaller than vAe (e.g., Figure 3 in LN15, and Figure 7 in Yu et al. 2017). With the
former distinction evident, we note that trapped FSMs in ER83 are highly dispersive at least when
k is not far larger than a cutoff (e.g., Edwin & Roberts 1983; Roberts et al. 1983). Observationally,
these two distinctions offer a richer possibility for interpreting oscillatory signals, to illustrate which
we consider a spatially resolved QPP measured with the Nobeyama RadioHeliograph (NoRH) as
reported by Kupriyanova et al. (2013). As detailed therein, multiple periodicities were simultaneously
found, with the associated spatial distributions of the spectral power strongly indicating an axial
fundamental together with its overtones in the involved flare loop. Contrasting the observations with
the canonical ER83 theory, the authors deduced that these standing modes belong to the kink family,
and FSMs were ruled out because of their dispersive properties. However, adopting density profiles
similar to the “outer µ” one with µ < 2, both LN15 and Lopin & Nagorny (2019) suggested that
the observations may be interpreted as FSMs as well. Put to seismology, this interpretation returned
values for the internal Alfvén speed vAi that may differ considerably from those returned with the
interpretation in terms of kink modes, for which purpose we quote ∼ 1100 km s−1 from Lopin &
Nagorny (2019, section 6) and ∼ 1750 km s−1 from Kupriyanova et al. (2013, section 5.1). Strictly
speaking, a comparison between the two sets of vAi is not straightforward because Lopin & Nagorny
(2019) adopted pressureless MHD whereas a finite gas pressure is considered in Kupriyanova et al.
(2013) 2. Our point is that the disappearance of cutoff wavenumbers for FSMs as a result of some
straightforward departure of the equilibrium from ER83 can offer more physical interpretations for
observations in the first place, and enable more seismological possibilities afterwards.

Some further consequence arises if we now focus on standing FSMs in AR loops. For the ease of
description, let us recall that we consistently work in pressureless MHD, and adopt the customary
assumption that sees AR loops as straight, density-enhanced, field-aligned cylinders. We further
assume that the radial density distribution is of the “outer µ” type, which is reasonable but admittedly
difficult to prove or disprove (e.g., Aschwanden et al. 2003; Goddard et al. 2017). In addition,
we assume that lower coronal eruptions (LCEs), the primary exciter for the much-observed large-
amplitude radial fundamental kink modes (Zimovets & Nakariakov 2015; Nechaeva et al. 2019), can
deposit a non-negligible amount of energy as axisymmetric perturbations to AR loops as well. Note
that this assumption is not that bold but has been implied in the interpretation of rapidly propagating
waves as sausage wavetrains (see the review by Roberts 2008, and references therein). For our
purposes, it suffices to consider only axial fundamentals. With dimensionless cutoff wavenumbers
kcutoffR ≥ 1/

√
ρi/ρe − 1 when µ ≥ 2, one finds that kcutoffR ≥ 1/3 given the typical range of [2, 10]

2 Given that flare loops tend to be dense and hot, one may question whether it is justifiable to adopt pressureless
MHD. However, this issue is unlikely to be restrictive provided that the seismologically deduced vAi is understood as
the transverse fast speed (see Chen et al. 2016). However, caution needs to be exercised when one assesses how FSMs
are influenced by the curvature and lateral expansion of flare loops, both effects being observationally relevant but
nonetheless not addressed here (for more discussions, see e.g., Pascoe et al. 2009 and Pascoe & Nakariakov 2016 as
well as the references both therein and in Li et al. 2020).
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quoted for the density contrast ρi/ρe (Aschwanden et al. 2004). One further finds that kR = πR/L .
π/15 in view of the measurements of widths and lengths for AR loops imaged in EUV (Schrijver 2007,
Figure 1). Standing FSMs, at least axial fundamentals, are therefore unlikely to be observable for
two reasons. One is that their periodicities will be ∼ R/vAi and therefore short, and the other is
that they tend to experience rapid attenuation as well. Let us stress that these two signatures have
not been explicitly shown for this particular “outer µ” profile but are expected with the studies
on 1D IVPs addressing standing FSMs in the leaky regime for an ER83 equilibrium (e.g., Terradas
et al. 2007; Nakariakov et al. 2012). Now consider those AR loops with µ < 2. Given the absence
of cutoff wavenumbers, the system is expected to settle to a trapped mode or some combination
of trapped modes, the quality of the oscillatory signals being therefore sufficiently high. Likewise,
the periodicites will be eventually characterized by the longitudinal Alfvén time L/vAe, which can be
readily resolved with, say, the majority of available UV/EUV instruments. In fact, both expectations
have already been invoked in seismological applications, albeit in the context of flare loops (LN15,
Lopin & Nagorny 2019). Supposing that AR loops with µ < 2 are not uncommon, one further deduces
that a substantial fraction of kink oscillations will be mixed with standing FSMs when LCEs occur.
As advocated by Chen et al. (2015) and Guo et al. (2016), the simultaneous observations of multiple
modes of distinct nature will then considerably mitigate the non-uniqueness issue inherent to coronal
seismology (see Arregui & Goossens 2019, for dedicated remarks) 3. However, standing FSMs have
not been reported or even implicated in observations of oscillating AR loops to our knowledge. An
obvious excuse is that observers have nearly exclusively adopted the ER83 framework and therefore
dismissed the possibility that FSMs may possess periodicities & 2L/vAe altogether 4. Our point,
however, is that this possibility is expected solely on the basis of EVP analyses on an open domain,
and one has yet to demonstrate that FSMs with periodicities & 2L/vAe do exist as solutions to the
pertinent IVP.

Focusing on sausage oscillations in AR loops with the “outer µ” family of density profile, we intend
to address the question “Does the absence of cutoff wavenumbers guarantee a temporal behavior that
is distinct from the situation where cutoff wavenumbers are present?” We decompose this question
into two interconnected aspects. One, how does the value of µ influence the timescale that charac-
terizes the energy attenuation? Two, does the transverse or longitudinal Alfvén time characterize
the periodicity when a wave signal is sufficiently strong? This manuscript is structured as follows.
Section 2 formulates the IVP for a radially open system, which is then solved with a direct finite-
difference (FD) approach in Section 3. While the answer to our question is already clear in the
FD solutions, Section 4 moves on to re-solve the IVP by superposing eigen-solutions to the relevant
EVP on a closed domain. These modal solutions are presented for more than just cross-validation
purposes. Rather, they help quantify the specific contributions from individual frequencies. By ex-
perimenting with various domain sizes, we will better connect the solutions to our IVP with the

3 Simultaneous observations of multiple modes are rare. Our point is that the more information one gathers from
observations, the better the to-deduce quantities can be constrained. Take the much-employed kink oscillations in AR
loops. Their seismological applications significantly benefit from such additional information as the different damping
characteristics in different stages of their temporal evolution (e.g., Hood et al. 2013; Ruderman & Terradas 2013;
Pascoe et al. 2016; Guo et al. 2020). Likewise, additional information can be gleaned from the transverse distributions
of the EUV emissions from AR loops (see Pascoe et al. 2018 and also Goddard et al. 2017). On this aspect we note that
a to-deduce parameter may still be constrained by such techniques as model averaging within the Bayesian framework
even when observations do not favor one particular formulation out of many candidate formulations that involve this
parameter (see the review by Arregui 2018, and references therein).

4 The reason for FSMs to be excluded is more related to the fact that the relevant periodicities were found in the
transverse displacements of AR loops. See Appendix C for more on this aspect.
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theoretical expectations from the analyses of EVPs on an open domain. Section 5 summarizes this
study, ending with some concluding remarks.

2. PROBLEM FORMULATION

We adopt pressureless ideal MHD as our theoretical framework, in which the primitive variables are
the mass density ρ, velocity v, and magnetic field B. The equilibrium quantities are denoted with a
subscript 0, and the equilibrium is taken to be static (v0 = 0). Working in a cylindrical coordinate
system (r, θ, z), we take the equilibrium magnetic field to be uniform and directed in the z-direction
(B0 = B0ez). Seeing AR loops as density-enhanced cylinders with some mean radius R, we assume
that the equilibrium density (ρ0) depends only on r and decreases from ρi at the cylinder axis (r = 0)
to ρe infinitely far from the cylinder (r →∞). The Alfvén speed is defined by v2

A = B2
0/(µ0ρ0) with

µ0 being the magnetic permeability of free space. From here onward, by “internal” (subscript i) and
“external” (subscript e) we consistently refer to the equilibrium quantities evaluated at r = 0 and
r →∞, respectively. The internal (external) Alfvén speed is therefore denoted by vAi (vAe).

2.1. Preliminary Formulation of the Initial Value Problem

We now formulate the preliminary version of the initial value problem (IVP) in a radially open
system. Let the subscript 1 denote small-amplitude perturbations to the equilibrium. Specializing
to sausage perturbations (∂/∂θ = 0), the linearized, pressureless, ideal MHD equations read

ρ0
∂v1r

∂t
=
B0

µ0

(
∂B1r

∂z
− ∂B1z

∂r

)
, (1)

∂B1r

∂t
=B0

∂v1r

∂z
, (2)

∂B1z

∂t
=−B0

1

r

∂

∂r
(rv1r) . (3)

With coronal cylinders bounded by the planes z = 0 and z = L in mind, the following ansatz

v1r(r, z; t) = v̂(r; t) sin(kz),

B1r(r, z; t) = B̂r(r; t) cos(kz),

B1z(r, z; t) = B̂z(r; t) sin(kz),

(4)

is appropriate for axial standing modes, with k = nπ/L being the quantized axial wavenumber
(n = 1, 2, · · · ). Equations (1) to (3) then become

ρ0
∂v̂

∂t
=−B0

µ0

(
kB̂r +

∂B̂z

∂r

)
, (5)

∂B̂r

∂t
=kB0v̂, (6)

∂B̂z

∂t
=−B0

1

r

∂

∂r
(rv̂) . (7)

Without loss of generality, the initial conditions (ICs) are specified as

v̂(r, t = 0) = u(r), (8)

B̂r(r, t = 0) = B̂z(r, t = 0) = 0. (9)
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The boundary condition (BC) at the cylinder axis (r = 0) reads

v̂ = B̂r = ∂B̂z/∂r = 0, (10)

whereas the BC at r →∞ is irrelevant.
It proves necessary to examine the energetics associated with the IVP as well. Let V refer to a

volume V bounded laterally by a cylindrical surface with radius r and horizontally by the planes
z = 0 and z = L. One then finds from Equations (5) to (7) that

Etot(r, t)− Etot(r, t = 0) = −F (r, t), (11)

where

Etot(r, t)=πL

∫ r

0

(r′dr′)

{
1

2
ρ0(r′)v̂2(r′, t) +

1

2µ0

[
B̂2
r (r
′, t) + B̂2

z (r
′, t)
]}

, (12)

F (r, t)=πL

∫ t

0

dt′ [rp̂tot(r, t
′)v̂(r, t′)] . (13)

Here a common factor πL is retained to ensure that Etot(r, t) represents the instantaneous total energy
in V , while F (r, t) represents the cumulative energy loss from V . Furthermore, p̂tot = B0B̂z/µ0

is connected to the Eulerian perturbation of total pressure. Evidently, the terms in the square
parentheses in Equation (13) stem from the radial component of the Poynting vector.

2.2. Reformulation of the IVP and Parameter Specification

For mathematical convenience, Equations (5) to (10) are reformulated to the following form.

IVP 1 Solutions are sought for the following equation

∂2v̂

∂t2
=v2

A(r)

(
∂2v̂

∂r2
+

1

r

∂v̂

∂r
− v̂

r2
− k2v̂

)
, (14)

subjected to the ICs

v̂(r, t = 0) = u(r),
∂v̂

∂t
(r, t = 0) = 0, (15)

togeter with the BC

v̂(r = 0, t) = 0, (16)

on a domain spanning from r = 0 to ∞.

Necessary for energetics considerations, B̂r(r, t) and B̂z(r, t) can be found with v̂(r, t) by integrating
Equations (6) and (7) from the initial state (9).

We proceed to make IVP 1 more specific. The equilibrium density distribution is chosen to be the
“outer µ” profile in Yu et al. (2017), namely

ρ0(r) = ρe + (ρi − ρe)f(r),

f(r) =

 1, 0 ≤ r ≤ R,

(r/R)−µ , r ≥ R.

(17)
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Here µ ≥ 1 measures the steepness of ρ0(r) outside the cylinder. We focus on axial fundamentals
(k = π/L). In addition, we specify the initial perturbation in Equation (15) as

u(r)

vAi

=

sin3(πr/Λ), 0 ≤ r ≤ Λ,

0, r ≥ Λ,
(18)

which is localized within r = Λ and prescribed to be sufficiently smooth with a magnitude arbitrarily
set to be the internal Alfvén speed (vAi).

The solution to IVP 1 is fully determined by the dimensionless paramters [ρi/ρe, µ;L/R; Λ/R],
among which we see µ as the primary adjustable one. The density contrast and loop length-to-radius
ratio are fixed at [ρi/ρe, L/R] = [2.25, 15], both close to the lower end of but nonetheless within
the accepted range for AR loops (e.g., Aschwanden et al. 2004; Schrijver 2007). We take Λ = 4 R
unless otherwise specified. Figure 1a illustrates our equilibrium, and the blue arrows represent the
initial velocity field in any cut through the cylinder axis as appropriate for an axial fundamental.
Specializing to IVP 1, Figure 1b shows the radial profiles for u(r) = v̂(r, t = 0) (the blue dashed curve)
and for the equilibrium density (ρ0, the solid curves). Two values are adopted for µ, one being 1.5
(the black curve) and the other being 5 (red). As already stressed, FSMs do not suffer from cutoff
wavenumbers kcutoff for µ < 2. When µ ≥ 2, kcutoffR always exceeds 1/

√
ρi/ρe − 1 and therefore

& 0.89 with the chosen ρi/ρe, making trapped modes irrelevant for the chosen kR = π/15 ≈ 0.21.

3. FINITE-DIFFERENCE SOLUTIONS

We choose to solve IVP 1 with two independent methods, one being a finite-difference (FD) ap-
proach, and the other being a modal approach involving eigenmodes for the EVPs on either a closed
or an open domain. In practice, the FD approach turns out to be orders-of-magnitude less time-
consuming, and is therefore more suitable for parametric studies.

3.1. Method

The development of our FD code starts with constructing a system of code units, the details
of which are irrelevant because we will consistently present our results as dimensional quantities.
Equation (14) is discretized on a uniform grid with spacing ∆r = 0.01 R over a domain of [0, rM]. All
spatial derivatives are approximated by centered differences, yielding second-order accuracy in space.
The time-marching is handled in a leap-frog manner with a uniform timestep ∆t. A ghost timestep
at t = −∆t is introduced to account for the IC for ∂v̂/∂t, ensuring that the scheme is second-order
accurate in time as well. The timestep is specified as ∆t = c∆r/vAe, where the Courant number c is
chosen to be ∼ 0.4 to ensure numerical stability. Grid convergence tests are conducted to ensure that
varying the grid spacing or the Courant number does not influence our results. More importantly,
we make sure that the location of the outer boundary rM does not affect our FD solutions either.

3.2. Numerical Results

Figure 2 presents our FD solutions by showing the distribution of the radial speed v̂ in the r−t plane.
We contrast two cases with the steepness parameter being (a) µ = 1.5 and (b) µ = 5, respectively.
One sees from Figure 2 that the temporal evolution in both cases is characterized by some dispersive
propagation of the axisymmetric disturbance. To proceed, we note that the disturbances belong
to the fast family, and the local fast speed is equivalent to the local Alfvén speed in pressureless
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MHD. For the ease of description, the most prominent wavefronts are singled out and labeled such
that the + (−) sign pertains to outward (inward) propagation. When necessary, the same label will
be used to denote the associated wake as well. The following features can then be readily told in
both cases, to describe which it suffices to consider only Figure 2a. Firstly, the initial perturbation
splits into two wavefronts manifested as the two bright stripes labeled 1+ and 1−. While not that
evident, wavefront 1− is actually accompanied by a wake appearing as a narrow dark stripe. At least
a substantial fraction of both wavefront 1− and its wake then make it into the cylinder (r < R),
as evidenced by the change of slope of the stripe. Here by “a substantial fraction” we mean that
some reflection is expected but difficult to identify. Secondly, once reaching the cylinder axis (r = 0),
wavefront 1− is reflected to form wavefront 2+ which then propagates outward as a dark stripe.
The change from a bright to a dark stripe for essentially the same wavefront is simply because v̂
necessarily reverses sign at the cylinder axis, which acts as a rigid wall in the present context (see
also Berghmans et al. 1996, hereafter BDBG96). In this sense, the bright stripe following wavefront
2+, namely wake 2+, is actually the reflected wake 1−. Thirdly, the partial reflection of wake 2+

around the cylinder boundary (r = R) then leads to wavefront 3−, part of which is guided by the
dashed curve. Wavefront 4+ then result from the reflection of wavefront 3− at the cylinder axis.
Having described these common features, we note that some differences nonetheless exist between
the two cases. For instance, wavefront 3− is easier to tell for µ = 5 than for µ = 1.5. This is
understandable because the case with µ = 5 corresponds to a steeper vA profile around the cylinder
boundary and hence a stronger partial reflection there.

The slight differences notwithstanding, in both cases one expects a continuous decrease for the
wave energy in the cylindrical volume V bounded by r = Λ, namely where the initial perturbation is
applied. This expectation is indeed true 5, to demonstrate which we display the temporal variations
of the total energy in V (Etot, the dashed curves) and the cumulative energy loss from V (F , dash-
dotted) in Figure 3. The sum Etot +F is further given by the solid curves. We discriminate between
the cases with µ = 1.5 and µ = 5 by different colors. From the solid curves one sees that energy
conservation is maintained remarkably well, to quantify which we quote an accuracy of better than
0.05% for all FD computations. Examining the dashed curves, one sees that Etot shows a couple
of plateaus with the behavior of Etot for µ = 5 around t ∼ 5 R/vAi being an example. In view of
Equations (11) and (13), these plateaus appear simply because the radial component of the Poynting
flux tends to vanish therein. More importantly, Etot rapidly decreases with time, with the two most
prominent intervals readily accounted for by the passage of wavefronts 1+ and 2+ (see Figure 2).
Virtually no energy is left in V when t & 7 R/vAi, which is true for µ = 5 and µ = 1.5 alike.

The rapid attenuation of wave energy can be told, in a more straightforward way, by directly showing
the temporal evolution of the radial speed itself v̂. This is done in Figure 4 where we plot v̂ at r = R
and use different colors to discriminate different values of µ. We note that the FD solutions are
shown by the solid curves, labeled “FD open” to reflect that they are found on an open domain. The
asterisks, labeled “modal closed”, represent the solutions found by superposing the eigenfunctions for
the EVP on a closed domain. The details of the modal solutions are not important for now. What
matters is that they agree with the FD ones exactly, thereby suggesting the reliability of both sets of

5 In addition to µ, the value of Λ is also varied in the parametric survey to be presented shortly. When Λ & 6 R,
we can discern some very brief time intervals with widths . 0.2R/vAi during which the total energy Etot shows an
extremely weak increase. However, these intervals are not important for our purposes because they appear exclusively
after Etot has already decreased by a factor of & 50.



10 Li et al.

solutions. Consider now only the solid curves. With the aid of Figure 2, one readily identifies the first
three extrema with wavefronts 1− and 2+ as well as wake 2+. One further sees one more extremum
(two more extrema) in the black (red) curve, the corresponding wavefronts/wakes also identifiable in
Figure 2. When discernible, any extremum in the black curve appears later than its counterpart in
the red curve. The explanation for this behavior is actually straightforward because the extrema in
v̂(R, t) ultimately derive from wavefront 1−. One sees from Figure 1 that the local fast speed vA(r)
at any r > R is larger for µ = 5 than for µ = 1.5. It therefore takes more time for wavefront 1− to
enter the cylinder (r ≤ R) in the case with µ = 1.5, thereby making the relevant extrema in v̂(R, t)
appear later. With this understanding, the spacing between two consecutive prominent extrema, or
equivalently the periodicity when the signal is strong, is intimately connected to the passage of the
relevant wavefronts/wakes before they appear in v̂(R, t). The end result is that, the periodicity is
expected to depend on the details of both the equilibrium density profile and the initial perturbation.
In our setup, this translates into the dependence on µ and Λ.

Figure 5 quantifies the dependence of the wave behavior on the steepness parameter (µ) for a
number of values of the spatial extent of the initial perturbation (Λ) as labeled. Two quantities are
examined, one being the time that it takes for Etot(Λ, t) to drop from the initial value by a factor of
e4 ≈ 55 (τener, Figure 5a) and the other being the temporal spacing between the first two extrema
in the v̂(R, t) profile (∆1, Figure 5b). Let us examine Figure 5a first, and start by noting that we
deliberately choose a rather large factor (e4) to determine τener. We note further that the initial
perturbation peaks at r = Λ/2 (see Equation (18)). Now two prominent features are evident. Firstly,
τener at any given µ increases with Λ. Secondly, the µ-dependence of τener tends to be weak when
Λ . 2 R. Let V still denote the cylindrical volume laterally bounded by r = Λ. It turns out that
the departure of wavefronts 1+ and 2+ from V is the primary reason for Etot(Λ, t) to decrease to the
designated threshold (see Figure 2). In particular, τener tends not to be much longer than the time
t2+ at which wavefront 2+ arrives at r = Λ. In turn, this transit time t2+ comprises two components,

t2+ = t1−(Λ/2→ 0) + t2+(0→ Λ), (19)

where the symbols on the right-hand side (RHS) are such that t1−(Λ/2 → 0) represents the time
that wavefront 1− spends when traveling from r = Λ/2 to r = 0. For a given µ, both terms on the
RHS increase with Λ, meaning that t2+ and hence τener increase monotonically with Λ. Now move
on to the µ-dependence for a given Λ. When Λ . 2 R, the cylinder exterior (r > R) is relevant
for determining t2+ only by being partially involved in t2+(0 → Λ). When Λ > 2 R, however, it is
involved in both terms on the RHS of Equation (19). The end result is that, t2+ and hence τener

are insensitive to µ when Λ . 2 R but tend to decrease with µ when the opposite is true, which is
understandable given that the local fast speed vA(r) at any r > R increases with µ.

Now move on to Figure 5b. One sees that ∆1 possesses a considerably more complicated behavior,
by which we mean the features difficult to understand with the simple kinematic considerations that
were applied to Figure 5a. Take the cases where Λ = 4 R and Λ = 8 R. In both cases, the first and
second extrema in the v̂(R, t) profile correspond to wavefronts 1− and 2+, respectively. In kinematic
terms, the temporal spacing between the two then comprises t1−(R → 0) and t2+(0 → R), neither
of which is supposed to involve Λ or µ. Consequently, the blue and maroon curves are expected
to overlap, an expectation evidently at variance with the numerical results. One therefore deduces
that ∆1 embeds some subtleties that the kinematic arguments cannot address, which will become
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evident in the modal solutions to be presented shortly. The quick answer is the common sense that
µ is relevant for determining the eigenstructures, while Λ determines how the energy in the initial
perturbation is distributed among the eigenmodes (see Equation (23)). Important for now is that
Figure 5 has already answered the questions we laid out in the Introduction. Firstly, Figure 5a
indicates that the energy imparted by the initial perturbation is attenuated within a characteristic
timescale τener ∼ O(Λ/vAi). If Λ is not far different from R, then axisymmetric perturbations will
rapidly become too weak to detect. Secondly, even if some instrument happens to capture a per-
turbation immediately after its excitation, Figure 5b indicates that ∆1 is consistently ∼ O(R/vAi),
thereby placing rather stringent demands on the instrumental cadence. Thirdly, for any examined Λ,
no abrupt change is seen in the behavior of τener or ∆1 when µ crosses the nominally critical value of
two. Put another way, trapped modes are not discernible even though they suddenly appear when µ
drops below two in EVPs on an open domain. We address why in what follows.

4. MODAL SOLUTIONS

4.1. Method

Our modal approach starts with specifying the following EVP on a closed domain.

EVP 1 Nontrivial solutions are sought for the following equation

−ω2v̆ = v2
A(r)

(
d2

dr2
v̆ +

d

rdr
v̆ − v̆

r2
− k2v̆

)
, (20)

defined on a domain of [0, d] and subjected to the BCs

v̆(r = 0) = v̆(r = d) = 0. (21)

Equation (20) is found by replacing v̂ with Re[v̆(r) exp(−iωt)] in Equation (14).
EVP 1 is known to possess the following Sturm-Liouville properties (see BDBG96 for details,

even though a step profile is examined therein). First of all, the eigenvalues (ω2) are positive and
form an infinite, discrete, monotonically increasing sequence {ωl} with respect to the mode number
l = 1, 2, · · · . The associated eigenfunction v̆l(r) can be made and will be seen as real-valued. It then
follows that v̆l(r) possesses l − 1 nodes inside the domain. In addition, the set {v̆l(r)} is complete
and satisfies the orthogonality condition∫ d

0

v̆l(r)v̆m(r)ρ0(r)rdr = 0, (22)

provided l 6= m. Eventually, the solution to IVP 1 can be written as

v̂(d)(r, t) =
∞∑
l=1

clv̆l(r) cos(ωlt),

0 ≤ r ≤ d, t ≤
∫ d

Λ

dr

vA(r)
,

(23)

where the coefficient cl measures the contribution from the l-th mode,

cl =

∫ d

0

u(r)v̆l(r)ρ0(r)rdr∫ d

0

v̆2
l (r)ρ0(r)rdr

. (24)
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The superscript (d) in Equation (23) is meant to indicate that the modal structure depends on the
domain size d. Here and hereafter, by “modal structure” we further mean the l-dependence of ωl.
Expressed formally, ωl can be written as

ωlR

vAi

= Fl(ρi/ρe, µ; kR; d/R). (25)

However, we stress that the modal solution v̂(d)(r, t) itself does not depend on d in the timeframe of
validity explicitly given in Equation (23). Physically, this timeframe of validity represents simply the
interval when the outermost edge of the perturbation is within the domain of EVP 1.

We now describe some details involved in the evaluation of Equation (23). To start, [ρi/ρe, kR,Λ/R]
is fixed at [2.25, π/15, 4] for all modal solutions. In the main text, we contrast only two steepness
parameters (µ = 1.5 and µ = 5) but experiment with a substantial number of dimensionless domain
sizes (d/R). The step profile (µ = ∞) is also of interest, the discussions nonetheless collected in
Appendix A. Regardless, we consistently formulate and solve EVP 1 with the general-purpose finite-
element code PDE2D (Sewell 1988), which was first introduced into the solar context by Terradas
et al. (2006). A uniform grid is adopted if d/R ≤ 150, otherwise we employ a grid whereby the
spacing is uniform for r ≤ 5 R but increases by a constant factor afterwards. We make sure that
different grid setups yield consistent solutions to EVP 1. Likewise, we make sure that the number
of modes (lmax) incorporated in the summation in Equation (23) is sufficiently large, meaning that
increasing lmax does not influence the modal solutions to be analyzed.

Some insights into EVP 1 are further necessary to address the roles of µ and d/R. These are made
transparent when Equation (20) is transformed into a Schrödinger form with standard techniques
employed by, e.g., BDBG96 and LN15, the result being

d2Φ

dr2
+Q(r)Φ = 0,

Q(r) =
ω2 − V (r)

v2
A(r)

.

(26)

Here Φ(r) = r1/2v̆(r) defines some “wave function”, while

V (r) = v2
A(r)

(
k2 +

3

4r2

)
(27)

defines the potential. Three properties then ensue. One, ωl is bound to exceed kvAi regardless of µ or
d/R (see Appendix B). Two, high-frequency modes with ωl � kvAe are permitted regardless of µ or
d/R, and they follow the relation ωl ≈ lπvAe/d when d/R is sufficiently large (also see Appendix B).
Three, the spatial behavior of mode functions v̆(r) is determined by the sign of Q(r). We therefore
classify the modes into two categories, labeling those with Q(d) > 0 (Q(d) < 0) as “oscillatory”
(“evanescent”). For the ease of description, we see this classification scheme as applicable only to
closed systems, but adopt the viewpoint that such terms as “trapped” versus “leaky” (e.g., ER83;
Cally 1986) or “proper” versus “improper” (ORT15; also Oliver et al. 2014) apply to open systems.
Evidently, an evanescent mode becomes a trapped mode when d goes infinite. Its frequency ωl is
therefore d/R-independent for sufficiently large d/R, and is bound to be lower than the “critical
frequency” ωcrit = kvAe because V (r) → k2v2

Ae when r → ∞. Now specialize to our chosen set
[ρi/ρe, kR] = [2.25, π/15]. Evanescent modes are possible only when µ < 2. All modes are oscillatory
for µ ≥ 2, the frequency ωl for any l always higher than ωcrit and d/R-dependent.
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4.2. Numerical Results

4.2.1. Frequency Distribution of Modal Contributions

We fix the domain size to be d = 50 R in this subsection. As shown by Figure 4, the modal solutions
thus constructed agree with their FD counterparts. The dependencies on the mode frequency (ωl) of
the contributions of individual modes are then shown in Figure 6, where the modes are represented by
the asterisks and different colors are adopted to discriminate between the two steepness parameters.
The critical frequency ωcrit = kvAe is plotted by the vertical dash-dotted lines for reference. By
examining |cl|, Figure 6a overviews the gross contributions from individual modes, where by “gross”
we mean that cl is position-independent (Equation (24)). For µ = 1.5 (the black symbols) and µ = 5
(red) alike, the ωl-dependence of |cl| features a number of peaks whose magnitude weakens with ωl.
The modal contributions at the specific location r = R are plotted in Figure 6b, from which one sees
that the spatial dependence of v̆l(r) makes the contributions from modes with ωl & 3.5 vAi/R less
pronounced than expected with Figure 6a. Regardless, the point is that v̂(d)(R, t) is dominated by
modes with ωl higher than but not far higher than vAi/R, in agreement with the periodicities found
in Figure 4. More importantly, the lowest mode frequency ω1 exceeds ωcrit, meaning that all modes
are oscillatory. This is true not only for µ = 5 but also for µ = 1.5, despite that trapped modes are
bound to appear in the latter case for a truly open system.

4.2.2. Dependence of Modal Structure on Domain Size

This subsection examines how the modal structure depends on the dimensionless domain size d/R,
the reasons for doing which are twofold. Firstly, that trapped modes appear for an open system
when µ < 2 was found on solid mathematical grounds by LN15. One naturally argues that d/R in
Figure 6 is not large enough for an evanescent mode to appear. However, the modal solution (23)
does not depend on d/R within the timeframe explicitly given there. Figure 6 then indicates that
the contribution from evanescent modes is negligible even if d/R is larger still. We will quantify
how negligible this contribution is. Secondly, to our knowledge, the only study involving EVP 1
was conducted by BDBG96 for a step profile. However, the d/R-dependence was not of interest and
hence only briefly mentioned in Figure 2 therein. We analytically examine this dependence in some
detail for step and continuous profiles in Appendices A and B, respectively. The analytical results in
turn help better quantify the modal behavior that we find numerically and present in the main text.

We start by examining the d/R-dependence of the modal contributions to v̂(d)(r, t). For this purpose
we rewrite the modal solution (23) as

v̂(d)(r, t) =
∑

ωl<kvAe

clv̆l(r) cos(ωlt) +
∑

ωl>kvAe

Slv̆l(r) cos(ωlt)∆ωl, (28)

where the second summation accommodates all oscillatory modes whereas the first collects evanescent
ones. The frequency spacing

∆ωl = ωl+1 − ωl (29)

is relevant only for oscillatory modes in Equation (28) but actually defined for all l. We further view
the combination Slv̆l(r) as some local “spectral density”, with Sl defined by

Sl =
cl

ωl+1 − ωl
. (30)
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Why is the modal solution decomposed in such a simple but cumbersome way? We choose to leave
a detailed answer until later, and for now stress only that it does not make sense to compare the
frequency-dependencies of clv̆l at a specific location between different values of d/R because of the
d/R-dependence of ωl. This is made more specific by Figure 7, where we specialize to r = R and
display the ωl-dependencies of the local spectral densities Slv̆l(R) for both µ = 1.5 (the black symbols)
and µ = 5 (red). Two domain sizes are examined, with the result for d/R = 50 (100) represented by
the asterisks (pluses). For both values of µ, one sees that the spectral densities for the two values of
d/R outline exactly the same curve, even though the mode frequencies are more closely spaced for
d/R = 100 than for d/R = 50. One further sees that all modes remain oscillatory for µ = 1.5 even
when d/R = 100. In fact, an evanescent mode appears for this µ only when d/R & 4000, a remarkably
large value that makes it numerically formidable to compute the necessary set of modes to yield a
further ωl-dependence of Slv̆l(R). We rather arbitrarily choose a d/R = 12800 and compute only
two small subsets for each µ, the first (second) comprising those five modes with ωl just exceeding
1.5 vAi/R (3 vAi/R). The corresponding spectral densities are plotted by the diamonds. For each µ,
one then expects to see ten but actually can discern only two diamonds because the mode frequencies
in each subset are too close to tell apart. Regardless, the diamonds lie exactly on the curve outlined
by the result for any smaller d/R, reinforcing the insignificance of evanescent modes despite that one
such mode does exist. To be precise, c1v̆1(R) for µ = 1.5 evaluates to 3.51× 10−11 in units of vAi or
rather in units of the magnitude of the initial perturbation.

We focus on how the modal structure varies when the domain size varies. For a sequence of d/R as
labeled, Figure 8a shows the frequencies (ωl) of the first 20 modes as horizontal ticks stacked vertically
at a given d/R, with the results for µ = 1.5 and µ = 5 differentiated by the black and red colors.
Note that in this “level scheme”, ωl is measured in units of the critical frequency (ωcrit), and the
horizontal dash-dotted line marks ωl = ωcrit. Two features then follow. By examining the case with
d/R = 50 for either value of µ, one sees that the frequency spacing ∆ωl becomes increasingly uniform
with increasing l. As detailed in Appendices A.2 and B, this feature derives from the fact that for
any µ at a sufficiently large d/R, the mode frequency ωl for large enough l can be approximated by
lπvAe/d (Equation (A17)). Slightly surprising is that this approximation is accurate to better than
5% for both µ when l merely exceeds 11, despite that l is nominally required to be� (d/R)/π ≈ 15.9
for Equation (A17) to hold. While not shown, we find that ωl may be approximated by lπvAe/d for
l beyond its nominal range of validity at other values of d/R as well. Regardless, by “feature 1” we
refer to the µ-independent fact that ωl ∝ lvAe/d and hence ∆ωl ∝ vAe/d at large l and large d/R.
Feature 2, on the other hand, concerns the modes with ωl that differs little from ωcrit. This turns out
to be difficult to examine with Figure 8a, because the mode frequencies become increasingly packed
when d/R increases. In fact, ∆ωl eventually becomes so small that we choose to exaggerate the
fractional difference δl = ωl/ωcrit−1 by a factor of 105 in Figure 8b, where the horizontal dash-dotted
line again marks ωl = ωcrit. Now one sees that ωl consistently exceeds ωcrit for µ = 5, meaning
that the modes are consistently oscillatory. When µ = 1.5, however, the first mode shows up as an
evanescent mode for d/R = 50× 35 = 12150, and so does the second mode at the even larger d/R.

Figure 9 further examines the modes with ωl close to ωcrit for (a) µ = 1.5 and (b) µ = 5. Here
the modulus of δl = ωl/ωcrit − 1 for a given l is displayed as a function of d/R by the solid (dashed)
curves when δl is positive (negative). Among the 50 modes examined, one mode out of five is plotted
when l ranges from 10 to 50, whereas all the first five are presented. For reference, the eigenfunctions
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v̆l of the first three modes are given by Figure 10 for µ = 1.5 (the left column) and µ = 5 (right).
A number of d/R are examined and can be directly read from the figure. Examine the case with
µ = 5 first. Figure 9b indicates that δl is positive for all modes, the oscillatory nature of which
is made clearer by the spatial behavior of v̆l in Figure 10. Furthermore, δl for all l follows a 1/d2-
dependence shown by the blue dash-dotted curve in Figure 9b. We note that this 1/d2-dependence
is not empirically found but inspired by the analytical behavior of δl for step density profiles when
δl � 1 (see Equation (A11) for details). That this dependence applies to the case µ = 5 reinforces
the notion that the mode behavior is qualitatively similar when µ > 2. Now move on to the more
interesting case where µ = 1.5. For any of the first three modes, Figure 9a indicates a transition from
an oscillatory to an evanescent mode as evidenced by the change of the sign of δl at some critical
(d/R)cri,l. When d/R becomes larger still, δl and hence ωl become independent of d/R. In addition,
(d/R)cri,l is seen to increase with l, a feature that can be readily understood with the left column
of Figure 10. Let Dl denote the spatial extent of the eigenfunction of an evanescent mode, meaning
mathematically that Q(r) becomes negative when r > Dl (see Equations (26) and (27)). When
multiple evanescent modes exist on a sufficiently large domain, their frequencies are necessarily such
that ω1 < ω2 < · · · because the entire set {ωl} is a monotonically increasing sequence with respect to
l. On the other hand, it can readily shown that the potential V (r) eventually approaches k2v2

Ae from
below (above) when µ < 2 (µ > 2). It then follows that D1 < D2 < · · · . Consequently, (d/R)cri,1

is necessarily smaller than (d/R)cri,2 for the domain to accommodate the diminishing portion of the
eigenfunction of the second mode. In fact, the sequence (d/R)cri,l necessarily increases monotonically
with respect to l. Figure 9a further indicates that at sufficiently large d/R, the oscillatory modes for
µ = 1.5 remain characterized by δl ∝ 1/d2 unless δl is extremely small.

With the aid of Equation (28), we now offer some general remarks on the dependencies on the
steepness parameter µ of both the modal behavior on a closed domain with large d/R and the
solution to IVP 1. However, we choose to focus on the chosen [ρi/ρe, kR,Λ/R] = [2.25, π/15, 4] to
avoid this manuscript becoming even longer. When µ < 2, more and more evanescent modes appear
when d/R increases. With the exception of the first several, the oscillatory modes are such that their
frequency spacing ∆ωl starts with a 1/d2-dependence before eventually settling to a 1/d-dependence.
All modes are oscillatory when µ > 2, and the corresponding ∆ωl simply transitions from a 1/d2-
dependence for small l to a 1/d-dependence for large l. Now focus on the two values of µ that we have
adopted. Recall that evanescent modes are irrelevant when µ = 5, and make no contribution to the
time-dependent solution when µ = 1.5. One therefore recognizes that only the second summation in
Equation (28) matters. What results from Equation (28) when d/R increases is then an increasingly
refined discretization of some Fourier integral over a continuum of ω extending from kvAe to infinity.
The relevant terms of this integral, applicable to a truly open system (d/R → ∞), was explicitly
worked out for µ = ∞ by ORT15 (see Appendix A.1 for details). Evidently, one byproduct of our
modal approach on a closed domain is the numerical distribution in the ω − r space of the terms in
the Fourier integral, which cannot be expressed in closed-form for general µ to our knowledge.

Supposing Λ/R is adjustable in view of Figure 5, we move on to demonstrate a generic condition
for evanescent modes to be negligible. It suffices to adopt a truly open system, and consider the
signal at a specific location such as r = R. We start with the assumption that evanescent modes
do not contribute, and deduce the condition that ensures this assumption. Let τ denote the extent
of the duration of interest, by which we mean that the signal becomes too weak to discern when
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t > τ . Evidently the outermost edge travels to a distance of Dτ . Recall that the spatial extent of the
eigenfunctions of the evanescent modes Dl increases with l. One therefore deduces that evanescent
modes are bound to be negligible when Dτ < D1. On the other hand, Dτ is evidently lower than
Λ + vAeτ because the speed at which the outermost edge travels (vA(r)) is consistently lower than
vAe. It then follows that evanescent modes can be neglected, provided

Λ + vAeτ < D1. (31)

Equating τ to τener in Figure 5, one readily finds that the inequality holds for all the values of Λ
examined therein, thereby explaining why the wave behavior is solely characterized by dispersive
propagation but shows no sign of wave trapping. In fact, we can slightly generalize Equation (31)
by supposing Λ � R and adopting the worst-case scenario that τ is given by t2+ in Equation (19).
We further neglect the deviation of vA(r) from vAe, meaning that t1−(Λ/2 → 0) ≈ Λ/2vAe and
t2+(0 → Λ) ≈ Λ/vAe. A rather safe estimate for t2+ and hence τ is then 3Λ/2vAe. The inequality
(31) therefore becomes

Λ <
2D1

5
. (32)

Note that the RHS evaluates to ∼ 4000 R in view of Figure 10, and further evaluates to ∼ 8×106 km
if we quote an R ∼ 2000 km from Figure 1 in Schrijver (2007) in keeping with the adopted L/R = 15.
One therefore deduces that trapped modes are unlikely to be relevant in the temporal evolution of
axial fundamental sausage modes in AR loops at least for the [ρi/ρe, L/R] examined here. We stress
that trapped modes are allowed as eigensolutions on an open system when µ < 2 as pointed out
by LN15. Likewise, we stress that their distinct dispersive behavior relative to trapped modes in
the canonical ER83 equilibrium is relevant when large values of k are involved such as happens for
impulsive sausage wavetrains in AR loops. This latter point is clear if one contrasts Figure 8 with
Figure 3 in Yu et al. (2017). It is just that the existence of trapped modes for µ < 2 on an open
system does not guarantee that they contribute to the temporal evolution of axial fundamentals.

5. SUMMARY

Focusing on fast sausage modes (FSMs) in solar coronal loops, this study aimed at examining
the consequences of some peculiar dispersive properties that may arise in an equilibrium differing
from Edwin & Roberts (1983, ER83) only by replacing the step with a continuous density profile
(ρ0(r)). By “peculiar” we mean that FSMs are not subject to cutoff axial wavenumbers when ρ0(r)
outside the cylinder possesses a sufficiently shallow r-dependence, which was first recognized on firm
mathematical grounds by Lopin & Nagorny (2015a, LN15) when analyzing the relevent eigenvalue
problem (EVP) on a radially open system. Two effects follow. Firstly, FSMs may be trapped
regardless of the axial wavenumber k and the density contrast ρi/ρe. Secondly, long-wavelength
trapped FSMs are nearly dispersionless with their axial phase speeds differing little from the external
Alfvén speed. These two effects then led LN15 and Lopin & Nagorny (2019) to deduce that fast
sausage perturbations of observable quality may exist in active region (AR) loops and flare loops
alike, with their periodicities characterized by the longitudinal rather than the canonical transverse
Alfvén time. If true, this deduction may substantially broaden the range of observed periodicities
that FSMs can account for, and therefore offer more seismological possibilities.

We took efforts to make our scope as narrow as possible by addressing the question “does the
existence of trapped modes in EVPs on an open system guarantee that they play a role in determining
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the temporal behavior of sausage perturbations”? To be specific, we chose to work in the framework
of linearized, pressureless, ideal MHD, and specialize to an “outer-µ” density profile (Equation (17)).
The solution to the relevant initial value problem on an open system (IVP 1) is then determined by
the dimensionless parameters [ρi/ρe, µ; kR; Λ/R], where µ characterizes the steepness of the density
profile outside the nominal radius R, and Λ represents the spatial extent of the initial perturbation.
We focus on axial fundamentals in AR loops by taking [ρi/ρe, kR] = [2.25, π/15] in view of the
observational constraints from EUV measurements (Aschwanden et al. 2004; Schrijver 2007). We
distinguish between the cases with µ < 2 and µ > 2 because trapped modes are present (absent) in
the former (latter) for the chosen [ρi/ρe, kR]. IVP 1 is solved with both a direct finite-difference (FD)
approach and a modal approach whereby the solution is expressed as the superposition of eigenmodes
for the pertinent EVP on a closed domain (EVP 1). The dimensionless domain size d/R is involved
in the latter approach, the evanescent modes in which are the counterparts of trapped modes on a
truely open system. Our findings can be summarized as follows.

The answer to the question we laid out is “No”. We came to this conclusion primarily because the
FD solutions for a substantial range of µ and Λ/R are consistently characterized by some dispersive
propagation but show no sign of wave trapping (Figure 5). In particular, the solutions show a
smooth transition when µ crosses the nominally critical value of two. With the modal approach,
we showed that more and more evanescent modes appear when the domain size increases, thereby
lending further support to the recognition of LN15. However, even the shortest spatial extent of the
evanescent eigenfunctions is well beyond the observationally reasonable range of the spatial extent of
initial perturbations 6. Consequently, the initial perturbations cannot impart a discernible fraction of
energy to evanescent modes, which in turn means that these modes do not contribute to the temporal
evolution of the system.

Before closing, we offer some further remarks on the influence on coronal FSMs due to the deviation
of the equilibrium from ER83. We start by noting that the formulation of the transverse structuring
actually offers a mixed message for FSMs in terms of their observational applications. On the one
hand, sausage-like perturbations are robust in the sense that they are permitted even when waveg-
uides are not strictly axisymmetric as happens for waveguides with, say, elliptic (e.g., Erdélyi &
Morton 2009; Aldhafeeri et al. 2021) or even irregular cross-sections (Aldhafeeri 2021; Guo et al.
2021). On the other hand, that the dispersive behavior of FSMs in non-ER83 equilibria may be qual-
itatively different does not necessarily mean that FSMs can be invoked to interpret a broader range
of periodicities. That said, one cannot rule out coronal FSMs as an interpretation for oscillations
with periodicities on the order of the longitudinal Alfvén time either. Let us name only one possible
equilibrium configuration where essentially the only difference from ER83 is the introduction of a
magnetically twisted boundary layer. Radial fundamental FSMs may be trapped regardless of the
axial wavenumber (e.g., Khongorova et al. 2012; Lim et al. 2018), the corresponding eigenfunctions
possessing spatial scales that do not far exceed the cylinder radius (e.g., Mikhalyaev & Bembitov
2014; Lopin 2021). One readily deduces that these radial fundamental FSMs may indeed show up in
reality, even though a definitive answer relies on a detailed study from the IVP perspective.

6 Some subtleties arise as a result of our outer-µ formulation. Further computations are therefore conducted, the
descriptions of which are nonetheless collected in Appendix C to streamline the main text. Our conclusion remains
valid, namely that the existence of trapped modes in EVPs on an open system does not necessarily mean that they
can show up in the evolution of the system in response to sausage-type perturbations.
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Anfinogentov, S., & Nakariakov, V. M. 2016,
A&A, 585, L6,
doi: 10.1051/0004-6361/201527835

Pascoe, D. J., & Nakariakov, V. M. 2016, A&A,
593, A52, doi: 10.1051/0004-6361/201526546

Pascoe, D. J., Nakariakov, V. M., Arber, T. D., &
Murawski, K. 2009, A&A, 494, 1119,
doi: 10.1051/0004-6361:200810541

Pascoe, D. J., Nakariakov, V. M., & Kupriyanova,
E. G. 2013, A&A, 560, A97,
doi: 10.1051/0004-6361/201322678

Roberts, B. 2008, in Waves & Oscillations in the
Solar Atmosphere: Heating and
Magneto-Seismology, ed. R. Erdélyi & C. A.
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APPENDIX

A. STANDING SAUSAGE MODES IN CORONAL CYLINDERS WITH STEP PROFILES

A.1. Solution to IVP 1 in Terms of Eigenmods for an Open System

This subsection presents the formal solution to IVP 1 expressed as the superposition of eigenmodes
for a laterally unbounded system. We closely follow the Fourier-integral-based approach that ORT15
adopted to examine the two-dimensional (2D) propagation of sausage wavetrains in a system that
is unbounded in the axial direction as well. The modal solution to our IVP 1 is actually part of
their 2D solution. Consequently, only slight revisions to Equation (25) in ORT15 are needed to
ensure dimensional and notational consistency. We choose to provide a minimal set of equations
leading to the modal solution for two reasons. One, some equations will find immediate applications
to the pertinent EVP on a closed domain. Two, the conceptual understanding embedded in the
formal solution to IVP 1 should be informative for future studies on standing sausage perturbations
in generic coronal structures. To this end, we see the axial wavenumber (k) as given and arbitrary.

The following notations are necessary. We use Jn and Yn to represent Bessel functions of the first
and second kind, respectively. Likewise, In and Kn denote modified Bessel functions of the first and
second kind, respectively. Only orders n = 0 and 1 are relevant. In particular, jn,m denotes the m-th
zero of Jn with m = 1, 2, · · · . The cutoff wavenumbers are then given by

kcutoff,mR =
j0,m√
ρi/ρe − 1

. (A1)

Defining

k2
i =

ω2 − k2v2
Ai

v2
Ai

,

k2
e =

ω2 − k2v2
Ae

v2
Ae

,

κ2
e = −ω

2 − k2v2
Ae

v2
Ae

= −k2
e ,

(A2)

we note that ω always exceeds kvAi and hence k2
i are always positive.

The modal solution to IVP 1 involves both proper and improper modes, which are discriminated
by the sign of k2

e . Proper modes (k2
e < 0) are relevant when k exceeds kcutoff,1, and correspond to a

discrete set of frequencies. Let j label a proper mode. Its eigenfunction reads

v̆j(r) =


− vAi

kiR
K0(κeR)J1(kir), 0 ≤ r ≤ R,

vAi

κeR
J0(kiR)K1(κer), r > R.

(A3)

Written in this form, Equation (A3) ensures that dv̆j(r)/dr is continuous. The mode frequency is
then dictated by the continuity of v̆j itself across r = R, which leads to the well-known dispersion
relation (DR, e.g., ER83; also Meerson et al. 1978; Spruit 1982; Cally 1986)

ki
J0(kiR)

J1(kiR)
+ κe

K0(κeR)

K1(κeR)
= 0 . (A4)
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Improper modes (k2
e > 0) are relevant regardless of k, their frequencies continuously spanning the

range (kvAe,∞). The eigenfunction reads

v̆ω(r) =

−vAi
k2

eR

ki

J1(kir), 0 ≤ r ≤ R,

−vAi(keR) [CJJ1(ker) + CY Y1(ker)] , r > R,

(A5)

where

CJ =
πkeR

2ki

[−kiJ0(kiR)Y1(keR) + keJ1(kiR)Y0(keR)] ,

CY =
πkeR

2ki

[−keJ1(kiR)J0(keR) + kiJ0(kiR)J1(keR)] .

(A6)

Both v̆ω and dv̆ω(r)/dr are ensured to be continuous. The modal solution eventually reads

v̂(r, t) =
J∑
j=1

cj v̆j(r) cos(ωjt) +

∫ ∞
kvAe

Sωv̆ω(r) cos(ωt)dω,

0 < r <∞, 0 < t <∞,

(A7)

where

cj =

∫ ∞
0

u(r)v̆j(r)ρ0(r)rdr∫ ∞
0

v̆2
j (r)ρ0(r)rdr

,

Sω =

ω

∫ ∞
0

u(r)v̆ω(r)ρ0(r)rdr

(ρev2
AiR

2)(kevAe)2(C2
J + C2

Y )
.

(A8)

Let us summarize the steps to solve IVP 1 given ρi/ρe, k, and u(r). First of all, with Equation (A1)
one counts J , the number of cutoff wavenumbers that are smaller than k. Evidently, J = 0 if
k < kcutoff,1, making proper modes irrelevant. Secondly, if J ≥ 1, then for each allowed j one evalu-
ates its eigenfrequency ωj and then its eigenfunction v̆j with Equations (A4) and (A3), respectively.
The contribution of the proper mode, cj, can then be found with Equation (A8). Thirdly, with Equa-
tions (A5) and (A6) one evaluates the improper eigenfunction for any ω > kvAe. The contribution
from the improper mode, Sω, is then readily found with Equation (A8).

A.2. Eigenmodes for a Closed System

This subsection examines some properties of the eigenmodes for a closed system, namely the so-
lutions to EVP 1 specialized to a step density profile. We start with a concrete example found for
[ρi/ρe, kR] = [2.25, π/15] and an initial perturbation given by Equation (18) with Λ/R = 4. IVP 1 is
solved with three independent methods. The first, to be called “modal open”, is based on eigenmodes
on an open system, whereas the second (“modal closed”) is based on Equation (23) for a domain
size d = 50 R. The two sets of solutions agree exactly with each other, and further agree with the



Standing Sausage Modes in Diffuse Coronal Loops 23

solution found with the simpler finite-difference approach. We choose not to present the comparison
among the time-dependent solutions, because a comparison between the frequency-dependencies of
the modal contributions seems more informative but is unavailable as far as we know. Note that these
contributions for the chosen [ρi/ρe, kR] are solely due to improper (oscillatory) modes in the “modal
open” (“modal closed”) approach. With Equations (28) and (A8) in mind, Figure 11 then specializes
to r = R and compares the local spectral density Slv̆l(R) from the “modal closed” approach (the
asterisks) with Sωv̆ω(R) from the “modal open” approach (the blue solid curve). It is reassuring to
see that the solid curve threads exactly the symbols, meaning that the continuum of improper modes
is adequately resolved by the discrete oscillatory modes despite the rather modest domain size.

We now focus on the discrete modes themselves by recalling the discussions immediately following
Equation (26). Firstly, k2

i > 0 is guaranteed because ωl necessarily exceeds kvAi. Secondly, the
mode classification is eventually determined by how ωl compares with kvAe, meaning that k2

e is
positive (negative) when a mode is oscillatory (evanescent). Regardless, the eigenfunction v̆l(r) can
be consistently described by Equation (A5), the reason being that J1(ker) and Y1(ker) always form a
numerically satisfactory pair in the outer region (R < r < d) 7. The requirement v̆l(r = d) = 0 then
gives a DR that governs the mode frequency ωl,

CJJ1(ked) + CY Y1(ked) = 0. (A9)

We now specialize to the situation where k < kcutoff,1 to better connect with the main text, the
associated analytical progress being new to our knowledge.

Let us examine the analytical behavior of the modes with frequencies ωl just above ωcrit = kvAe.
Expressing ωl as kvAe(1 + δ) with 0 < δ � 1, one finds that k2

i ≈ k2(ρi/ρe − 1) and k2
e ≈ k2(2δ) (see

Equation (A2)). Now suppose that keR � 1. The approximate expressions of Jn and Yn for small
arguments then indicate that Y1(keR) ∼ 1/(keR) is the most singular term in the coefficients CJ and
CY (see Equation (A6)). The left-hand side (LHS) of the DR (A9) is therefore dominated by the
first term, meaning that ked ≈ j1,l. In other words,

δ =
ωl
kvAe

− 1 ≈
j2

1,l

2(kd)2
. (A10)

Given the assumptions δ � 1 and keR� 1, the modes in question are characterized by

ωl
kvAe

≈ 1 +
j2

1,l

2(kd)2
,

provided d/R� j1,l, (kd)2 � j2
1,l.

(A11)

Now consider high-frequency modes in a system with d/R� 1. By “high” we assume that

ωl � vAe/R, ωl � kvAe. (A12)

It then follows from Equation (A2) that kiR, keR� 1 and hence kid, ked� 1. With the expressions
for Jn and Yn at large arguments, some algebra indicates that the DR (A9) approximates to

sin[ke(d−R) + φe] = 0, (A13)

7 The outer solution can be equivalently expressed by the numerically satisfactory pair I1(κer) and K1(κer) (see
BDBG96, for details). It is just that κ2e is positive (negative) for evanescent (oscillatory) modes.



24 Li et al.

where φe satisfies the relation

tanφe =
√
ρe/ρi tan

[√
ρi/ρe(keR)− π

4

]
. (A14)

Note that Equation (A13) is implicit in ωl because ωl is involved in Equation (A14). Note further that
the range of φe is not restricted by Equation (A14) per se. However, as can be verified a posteriori,
φe is negligible to leading order, meaning that ke ≈ lπ/(d− R) ≈ lπ/d. If desired, this solution can
be plugged into Equation (A14) to yield the first-order correction due to φe, resulting in

ωl ≈ (lπ − φl)
vAe

d−R
. (A15)

Here φl given by

φl = arctan

[√
ρe/ρi tan

(√
ρi/ρe

lπ

d/R− 1
− π

4

)]
+

⌊√
ρi/ρe

l

d/R− 1
+

1

4

⌋
π, (A16)

with the floor function b·c introduced to make φl continuous with respect to l. Restricting oneself to
those modes with l � d/(πR) and l � kd/π in view of the assumptions (A12), one recognizes that
the RHS of Equation (A16) is necessarily far smaller than lπ. Overall, it suffices for our purposes to
summarize the properties of the high-frequency modes as

ωl ≈ lπ(vAe/d), for l� d/R

π
, l� kd

π
. (A17)

B. SOME FURTHER PROPERTIES OF EVP 1

This section examines some further properties of EVP 1 by capitalizing on the Schrödinger Equa-
tion (26). We recall that the equilibrium density is of the “outer-µ” type (see Equation (17)). This
subsection extends Subsection A.2 in that µ is no longer restricted to be infinite.

We start by showing that all solutions to EVP 1 necessarily possess an ωl that exceeds kvAi,
regardless of µ or d/R. What we offer is only a slight generalization of the arguments given by
BDBG96 for a step density profile. This generalization is possible because the arguments therein rely
only on two conditions, one being that the potential V (r) consistently exceeds k2v2

Ai, and the other
being that the eigenfunction v̆l(r) vanishes at both r = 0 and r = d. Neither condition is restricted
to the particular µ =∞. Now suppose that ωl < kvAi for some mode, meaning that ω2

l < V (r). The
wavefunction Φ(r) and hence the eigenfunction v̆l(r) then necessarily peak somewhere in the domain,
diminishing toward both smaller and larger r. One then deduces that dv̆l(r)/dr is discontinuous,
thereby violating the continuity requirement for the Eulerian perturbation of total pressure.

We now address high-frequency modes in a system with d/R � 1, “high” in the same sense as
in the assumption (A12). Our approach is essentially a classical WKB one detailed in Bender &
Orszag (1999, Chapter 10). Somehow different is that we avoid the complication associated with the
turning points (namely where V (r) = 0), which are bound to occur at small r for high-frequency
modes because V (r) diverges at r = 0. This is done by handling the Schrödinger Equation (26) in
the interior (r < R) and exterior (r > R) separately. First consider the exterior, where the condition
ω2 � V (r) is ensured by Equation (A12). The leading order WKB solution to Equation (26) reads

Φ(r) ≈ Aev
1/2
A (r) sin[Θ(r)], (B18)



Standing Sausage Modes in Diffuse Coronal Loops 25

where

Θ(r) = ω

∫ r

R

dr′

vA(r′)
+ φ

with Ae and φ being constants. Requiring Φ(d) = 0 then leads to

ωl ≈
lπ − φl∫ d

R
dr′/vA(r′)

(B19)

for mode l. Evidently, the integral in Equation (B19) is well approximated by d/vAe for large d/R.
The high-frequency modes are therefore still characterized by Equation (A17), provided |φl| � lπ.

We proceed to show that the inequality |φl| � lπ indeed holds via three mutually complemen-
tary methods. Firstly, we numerically solve EVP 1 for a substantial number of combinations of
[ρi/ρe, µ; k; d/R]. Comparing the computed ωl with the RHS of Equation (B19) then indicates that
|φl| � lπ. Secondly, we make some analytical progress to estimate φl. Now the interior (r < R) needs
to be examined, for which purpose Equation (A5) indicates that the exact solution to Equation (26)
reads Φ(r) = Air

1/2J1(kir) with Ai being an arbitrary constant. In addition, the condition kiR � 1
is ensured by the assumption (A12), enabling one to employ the approximate expressions for Bessel
functions at large arguments to find

dΦ/dr

Φ

∣∣∣∣
r=R−

≈ ki cot (kiR− π/4)− 1

2R
. (B20)

One further finds with the external WKB solution (B18) that

dΦ/dr

Φ

∣∣∣∣
r=R+

≈ ki cotφl +
1

2

d ln vA

dr

∣∣∣∣
r=R+

. (B21)

Equating Equations (B20) to (B21) then leads to that

cotφl ≈ cot (kiR− π/4)− 1

2

(
1

kiR
+

1

ki

d ln vA

dr

∣∣∣∣
r=R+

)
. (B22)

Now suppose that the second term in the RHS of Equation (B22) is negligible, implying that µ is not
too large. Let us further see the RHS of Equation (B22) as known from Equation (A17). It turns
out that φl can be approximated to leading order by φl ≈ kiR − π/4 ≈ lπ

√
ρi/ρe/(d/R), meaning

that |φl| � lπ for sufficiently large d/R. Thirdly, we offer some heuristic arguments to estimate |φl|
for arbitrary µ > 1. Let Nint (Next) be the the number of extrema in the eigenfunction v̆l(r) in the
interior r < R (the exterior R < r < d). Evidently, φl in Equation (B19) stems from the influence of
the interior, making |φl/π|/l essentially a measure of Nint/Next. With d/R� 1, one readily deduces
that Nint � Next and hence |φl| � lπ.

C. INTRICACIES ASSOCIATED WITH THE “OUTER µ” FORMULATION

This section examines some subtlety associated with our “outer µ” formulation (17) for the equi-
librium density ρ0(r). Let us recall our argument that, for the the fixed pair [ρi/ρe, L/R] = [2.25, 15]
and some chosen µ < 2, the dimensionless spatial extent of the initial perturbation (Λ/R) needs to
be unrealistically large for evanescent modes to be non-negligible in the time-dependent solutions to
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IVP 1. However, Equation (17) indicates that the spatial range containing the density enhancement
broadens when µ decreases, making the nominal radius R less and less ideal for characterizing the
spatial variation of ρ0(r). Let the spatial scale of ρ0(r) be measured by some effective radius Reff .
One may question whether our argument still holds because there may be a regime where evanescent
modes are visible for not so extreme values of Λ measured in units of Reff rather than R. Somehow
it is non-trivial to quantify this aspect in an exhaustive manner, to explain which we note that we
will exclusively adopt the FD approach to solve IVP 1 here for computational convenience. We will
additionally fix the steepness parameter at µ = 1.5, but experiment with two different values for
the density contrast ρi/ρe. Let τ denote the duration to be examined in an FD solution, and Dτ

the distance that the outer edge of the perturbation reaches when t = τ . For now consider the
modal structure for EVP 1 on a sufficiently large domain of size d, where by “sufficiently large” we
mean that d � Dτ such that a multitude of evanescent modes exist. From Section 4 we know that
oscillatory modes are always permitted, and the frequencies of evanescent modes (ω < ωcrit = kvAe)
may not differ much from those of the low-frequency oscillatory modes (ω & ωcrit). Now that low-
frequency oscillatory modes are excited in general, it may take some considerable amount of time
for them to interfere such that their contribution to a time-dependent solution eventually becomes
sufficiently weak to make evanescent modes visible. In practice, however, the value of τ cannot be
made infinite. Three regimes then arise in the signal behavior within a large but nonetheless finite
timeframe, where evanescent modes are not discernible, somehow discernible but weak, and stronger
than some threshold, respectively. We see evanescent modes as observationally relevant only when
the last regime occurs.

Some definitions and remarks are necessary here. We define Reff as the radial distance where
the function f(r) in Equation (17) attains 1/10, a factor that is meant to be small but admittedly
arbitrary. One nonetheless finds that Reff/R = 101/µ and evaluates to 4.64 for µ = 1.5. We see
Reff rather than R as being observationally relevant and consistently use Reff to measure Λ and
the loop length L. Likewise, time will be measured in units of the longitudinal Alfvén time τlong =
2π/ωcrit = 2L/vAe, which is more relevant for the large-time behavior. We examine only the timeframe
t . 40τlong, which is seen as sufficiently long. Overall, the time-dependent solutions to IVP 1 are
determined by the set of dimensionless parameters [ρi/ρe, L/Reff ,Λ/Reff ] given a fixed µ = 1.5. We
deem the range Λ/Reff ≤ 20 as observationally realistic for initial perturbations. On the other hand,
we will examine the following two quantities to assess the significance of evanescent modes. The first
is Γ(t) = Etot(Reff , t)/E0 with E0 = Etot(Λ, t = 0) being the total energy initially deposited to the
entire system. The second is simply the instantaneous radial speed at the effective radius v̂(Reff , t).
While both Γ(t) and v̂(Reff , t) measure the signal strength in the volume r ≤ Reff , we find that the
former can better bring out the differences when L/Reff or Λ/Reff varies.

We start by examining an AR loop with [ρi/ρe, L/Reff ] = [10, 10], which is only marginally realistic
because in general ρi/ρe (L/Reff) is lower (larger) in observations (e.g., Aschwanden et al. 2004;
Schrijver 2007). Figure 12 displays the temporal profiles of (a) Γ(t) and (b) v̂(Reff , t) for a number
of Λ/Reff as labeled. Examining any Λ/Reff in the chosen timeframe, one sees that a periodic
behavior develops at large t for Γ(t) and v̂(Reff , t) alike. We will focus on this periodic stage here
and hereafter. A slight difference between Figures 12a and 12b is then that the period in Γ(t) is
half that in v̂(Reff , t), which arises simply because Etot involves the perturbations as squared terms
by definition (see Equation (12)). More importantly, the signal strengthens when Λ/Reff increases
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as can be discerned in Figure 12b and seen more clearly in Figure 12a. Regardless, the signal
for any Λ/Reff weakens monotonically with time, eventually resulting in extremely small values for
both Γ(t) and v̂(Reff , t). Note that this is true even for Λ/Reff = 40, which exceeds the range
that we deem observationally realistic. Note further that the signal in the periodic stage tends to
weaken when L/Reff increases or ρi/ρe decreases from the value we choose. Figure 12 therefore
means that evanescent modes are not discernible for realistic combinations of [ρi/ρe, L/Reff ], thereby
strengthening our conclusion that the existence of evanescent modes in the pertinent EVP analysis
does not guarantee their relevance in the temporal evolution of the system. It then follows that one
needs to invoke, say, kink modes, to account for a periodicity on the order of the longitudinal Alfvén
time when analyzing oscillating AR loops even given our outer-µ formulation. Furthermore, whether
an interpretation in terms of kink modes is justifiable can be readily assessed by looking for the
tell-tale signature of transverse displacements because AR loops tend to be imaged with high spatial
resolution on a routine basis.

That said, evanescent modes may indeed be discernible or visible if one experiments with, say,
drastically different values of ρi/ρe. We proceed with a fixed combination [ρi/ρe,Λ/Reff ] = [100, 20],
the chosen density contrast being relevant for flare loops (e.g., Aschwanden et al. 2004). Figure 13
presents the temporal profiles of (a) Γ(t) and (b) v̂(Reff , t) for a variety of dimensionless loop length
L/Reff as labeled. Three features are evident regarding the periodic stage. Firstly, Figure 13b
indicates that the signal for any L/Reff further settles to a stage where v̂(Reff , t) actually possesses two
periodicities. the dominant one (Pdomi) being close to but nonetheless longer than τlong. In addition,
the signal amplitude is modulated by a second period (Penv � Pdomi)

8, as can be seen more clearly
in Figure 13a. Secondly, when L/Reff increases, the signal weakens and Pdomi (Penv) in units of τlong

slightly decreases (increases). This feature can be seen in both Figures 13a and Figure 13b, but is
clearer in the latter. Thirdly, and more importantly, the signal envelope fluctuates about a time-
independent level, which can be seen by examining the profiles of the maxima/minima of either Γ(t)
or v̂(Reff , t). Given this feature, we take the relevance of evanescent modes as self-evident, and focus
on the more interesting L/Reff-dependencies of Pdomi/τlong and Penv/τlong. Evidently, the envelope
modulation stems from the beat among evanescent modes, which themselves possess frequencies that
are marginally lower than ωcrit = 2π/τlong. We recall that a larger L/Reff means a larger L/R and
hence a smaller dimensionless axial wavenumber kR. We proceed to consider evanescent eigenmodes
of some given radial harmonic number l (say, l = 1 or l = 2 as in Figure 7 of Yu et al. 2017). Let ω
denote the eigenfrequency, P = 2π/ω the eigen-period, and vph = ω/k the phase speed. One readily
finds that P/τlong = ωcrit/ω = vAe/vph. The reason for Pdomi/τlong to decrease with L/Reff is then
that the phase speeds of evanescent modes increase toward vAe when kR decreases (see Figure 7 in
Yu et al. 2017). On the other hand, that Penv increases with L/Reff is because a reduction in kR

makes smaller the difference in the values of vph/vAe for modes with adjacent values of l.
That evanescent modes can be seen in Figure 13 does not necessarily mean that they are obser-

vationally relevant. Consider only a fixed ρi/ρe = 100 and only the periodic stage. Let A denote
the maximum amplitude of v̂(Reff , t) in units of the magnitude of the initial perturbation. Ex-
perimenting with a substantial number of combinations [L/Reff ,Λ/Reff ], we find that A always de-
creases (increases) with increasing L/Reff (Λ/Reff) when the other parameter is fixed, at least when

8 Several full cycles of this periodic amplitude modulation can be seen in the time series that extends beyond, say,
120τlong. However, we choose not to show these long time series to avoid the curves becoming too crowded
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8 ≤ L/Reff ≤ 15 and 0 < Λ/Reff ≤ 20. Suppose that evanescent modes can be seen as observationally
relevant only when A exceeds some threshold Ac, and let (L/Reff)c denote the critical L/Reff beyond
which A < Ac. Seeing Ac as variable, this then means that (L/Reff)c is a function of Ac. Figure 14
displays the Ac-dependence of (L/Reff)c for a number of Λ/Reff as labeled, before describing which
we need to mention some technical subtlety. We consistently adopt the timeframe t ≤ 40τlong to de-
termine A and eventually construct a symbol in Figure 14. However, Figure 13a has already shown
that Penv becomes longer when L/Reff increases, making it possible that the amplitude maximum
is not captured for t ≤ 40τlong if Penv is too long. This turns out not to be a real concern for two
reasons, one being that one needs to specify a timeframe in any case, and the other being that the
envelope modulation is already clear for t ≤ 40τlong. We will return to this point later. Now let
“allowed range” refer specifically to those L/Reff for which evanescent modes are visible. One sees
from Figure 14 that (L/Reff)c decreases monotonically with Ac for a given Λ/Reff , meaning that the
“allowed range” narrows when the relevant instrumental sensitivity weakens. Likewise, (L/Reff)c

increases when Λ/Reff increases, meaning that the “allowed range” broadens with increasing Λ/Reff

for a given sensitivity and hence a given Ac.
It should be informative to place Figure 14 in the ER83 context. Consider an “ER” loop, by which

we mean a loop with an equilibrium density ρ0(r) that equals ρi for r < Reff but ρe otherwise. Restrict
ourselves to axial fundamentals. A critical (L/Reff)ER then follows from Equation (A1),

(L/Reff)ER =
π
√
ρi/ρe − 1

j0,1

, (C23)

only below which evanescent modes are possible in an ER loop. With Equation (C23) one finds
that (L/Reff)ER evaluates to 13 for ρi/ρe = 100, and this value is represented by the horizontal
dash-dotted line in Figure 14. Two situations arise regarding the relevance of (L/Reff)ER, to describe
which we assume that L/Reff is known observationally and that a time series is available for the
pertinent observable over tens of longitudinal Alfvén times. First consider the situation where L/Reff

is observed to exceed (L/Reff)ER. Suppose that the observed signal eventually possesses a stage
where the amplitude does not diminish with time. It then follows from the left corner of Figure 14
that this stage cannot be interpreted in the ER83 framework, because no evanescent modes can
be excited regardless of Λ. In this regard, a diffuse loop model such as formulated by the outer-µ
profile may indeed broaden the range of flare-associated QPPs that FSMs may account for. However,
this broadending is rather limited because it happens only when the relevant instrument is highly
sensitive and Λ/Reff is nearly beyond the range that we deem observationally realistic. Now consider
the situation where L/Reff is observed to be smaller than (L/Reff)ER. Evanescent modes are allowed
by ER loops in this case, and are visible for the majority of combinations [Ac,Λ/Reff ] explored in
Figure 14 for our outer-µ loops. One may then question whether the temporal profile of the pertinent
observable can help categorize the involved flare loop as an ER loop or an outer-µ one. This is indeed
possible, to illustrate which we consider the case where L/Reff = 11. Suppose that the flare loop is
describable as an ER loop. Equation (C23) then yields a value of 5.66 if one replaces j0,1 = 2.41
therein with j0,2 = 5.52. This means that the evanescent mode with radial harmonic number l = 2 is
not relevant, and the pertinent signal eventually settles to a monochromatic variation with a constant
amplitude. Now suppose that the flare loop agrees with an outer-µ loop for which µ is presumed to
be 1.5, and suppose further that Λ/Reff = 10. It turns out that the v̂(Reff , t) profile is very similar
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to the black curve in Figure 13b, even though the amplitude maximum A in the periodic stage
attains a smaller value of ∼ 0.1. Nonetheless, it an amplitude of this magnitude can be resolved,
then the relevant observable will be seen to experience some envelope modulation, which is distinct
from what is expected for an ER loop. In addition, this amplitude modulation may also be useful to
distinguish between kink modes and FSMs in flare loops, if flare loops are not well spatially resolved
to tell whether they are experiencing transverse displacements. We refrain from discussing this aspect
further for two reasons, one being that kink modes in our outer-µ setup have yet to be examined,
and the other being that a dedicated forward modeling approach seems necessary to establish the
detailed observational signatures. Rather, with Figure 14 we conclude that whether evanescent modes
in outer-µ loops can be observed depends critically on instrumental sensitivity. We conclude further
that the ER83 cutoff (L/Reff)ER serves as a useful reference in that evanescent modes in outer-µ
loops are hardly observable when L/Reff ≥ (L/Reff)ER unless the pertinent instrument is extremely
sensitive.
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Figure 1. (a) Illustration of the equilibrium configuration, together with the initial velocity field in an
arbitrary plane through the cylinder axis (the blue arrows). The z-dependence of the initial perturbation
leads to axial fundamentals. (b) Radial profiles of the initial perturbation (v̂, the blue dashed curve) and
the equilibrium density (ρ0, the solid curves), both involved in IVP 1. The density contrast ρi/ρe is chosen
to be 2.25. Two steepness parameters are examined, namely µ = 1.5 (the black curve) and µ = 5 (red).
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Figure 2. Finite-difference (FD) solutions to IVP 1 for equilibrium density profiles with the steepness
parameter being (a) µ = 1.5 and (b) µ = 5. Plotted are the distributions of the radial speed v̂ in the r − t
plane. Some prominent wavefronts are singled out as labeled, with the plus (minus) sign representing outward
(inward) propagation. Both computations pertain to the combination [ρi/ρe, kR,Λ/R] = [2.25, π/15, 4].
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Figure 3. Temporal variations of some terms characterizing the energetics of axisymmetric perturbations
in the cylindrical volume (V ) where the initial perturbation is applied. The dashed curves labeled Etot

represent the total wave energy in V , while the dash-dotted curves represent the cumulative energy loss
from V and are labeled F (see Equations (12) and (13) for definitions). Their sum is plotted by the solid
curves. The energetics terms are evaluated with the finite-difference solutions to IVP 1 for two steepness
parameters, one being µ = 1.5 (the black curves) and the other being µ = 5 (red). Both computations
pertain to the combination [ρi/ρe, kR,Λ/R] = [2.25, π/15, 4].
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Figure 4. Temporal evolution of the radial speed at r = R as found by solving IVP 1 for two steepness
parameters, one being µ = 1.5 (the black curves and symbols) and the other being µ = 5 (red). All
computations pertain to the combination [ρi/ρe, kR,Λ/R] = [2.25, π/15, 4]. Two independent methods are
adopted to solve IVP 1. The finite-difference solutions are represented by the solid curves, labeled “FD
open” because this approach directly applies to a radially open system. The modal solutions are given by
the asterisks, labeled “modal closed” because the solutions are based on eigenmodes on a closed domain (see
Equation (23)). A domain of size d = 50 R is employed here.



34 Li et al.

Figure 5. Dependencies of (a) τener and (b) ∆1 on the steepness parameter µ for a number of values of
the spatial extent of the initial perturbation (Λ) as labeled. Here τener denotes the time at which the total
wave energy in the cylindrical volume laterally bounded by r = Λ drops from its initial value by a factor of
e4 ≈ 55. Furthermore, ∆1 denotes the temporal spacing between the first two extrema in the v̂(R, t) profile.
All results are found by solving IVP 1 with the finite-difference approach, and the combination [ρi/ρe, kR]
is fixed at [2.25, π/15].
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Figure 6. Frequency-dependencies of the contributions of individual modes to the modal solutions for a
fixed combination [ρi/ρe, kR,Λ/R, d/R] = [2.25, π/15, 4, 50]. Two steepness parameters are examined, one
being µ = 1.5 (the black asterisks) and the other being µ = 5 (red). Plotted are (a) the modulus of the
position-independent coefficient cl, and (b) the specific contribution clv̆l(r) evaluated at r = R. The critical
frequency ωcrit = kvAe is marked by the vertical dash-dotted lines for reference.
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Figure 7. Frequency-dependencies of the spectral density Slv̆l(r) evaluated at r = R involved in the modal
solutions for a fixed combination [ρi/ρe, kR,Λ/R] = [2.25, π/15, 4]. Two steepness parameters are examined,
one being µ = 1.5 (the black symbols) and the other being µ = 5 (red). The modal solutions are based on
eigenmodes on a closed domain, for which three different sizes (d) are experimented with. Note that only
two small subsets of modes are presented for the domain with d/R = 12800. See text for details.
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Figure 8. Eigenfrequency diagrams (“level schemes”) for the first 20 modes found by solving EVP 1 for
a fixed combination [ρi/ρe, kR] = [2.25, π/15]. Two steepness parameters are examined, one being µ = 1.5
(the black ticks) and the other being µ = 5 (red). A number of domain sizes (d) are examined as labeled,
and the mode frequencies with a given µ are represented by the horizontal ticks stacked vertically for a given
d. Plotted are (a) the mode frequencies in units of ωcrit = kvAe, and (b) the fractional difference of mode
frequencies from ωcrit. Note that this fractional difference is multiplied by a factor of 105.
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Figure 9. Dependencies on the dimensionless domain size (d/R) of the modulus of the fractional difference
δl = ωl/ωcrit − 1 as found by solving EVP 1 for a steepness parameter being (a) µ = 1.5 and (b) µ = 5.
The combination [ρi/ρe, kR] is fixed at [2.25, π/15]. For each pair [µ, d/R], the first five modes are always
presented, while the rest are evenly sampled with a step of five in l when l ranges from 10 to 50. In addition,
|δl| for a given l is connected by a solid (dashed) curve when δl is positive (negative). The blue dash-dotted
line represents a 1/d2-dependence for comparison. See text for details.
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Figure 10. Radial profiles of the first three eigenfunctions as found by solving EVP 1 on a variety of
domains differentiated by the linestyles. The combination [ρi/ρe, kR] is fixed at [2.25, π/15]. Two steepness
parameters are examined, one being µ = 1.5 (the left column) and the other being µ = 5 (right). The
eigenfunctions are arbitrarily rescaled to better visualize the differences between different domain sizes.
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Figure 11. Frequency-dependencies of spectral densities Sv̆(r) evaluated at r = R as found by solving
IVP 1 for a coronal cylinder with a step density profile. The combination [ρi/ρe, kR,Λ/R] is fixed at
[2.25, π/15, 4]. The asterisks represent the discrete modes pertinent to EVP 1 on a domain with d/R = 50,
whereas the blue solid curve represents the continuum of improper eigenmodes on a radially open system.
The vertical dash-dotted line marks the critical frequency ωcrit = kvAe. See text for details.



Standing Sausage Modes in Diffuse Coronal Loops 41

Figure 12. Temporal profiles for (a) the energy fraction Γ(t) and (b) the radial speed v̂(Reff , t) for a
loop with [ρi/ρe, L/Reff ] = [10, 10]. The steepness parameter is fixed at µ = 1.5, while a number of values
are examined for the spatial extent of the initial perturbation as labeled. All solutions are found with the
finite-difference approach. Here Reff represents the effective loop radius, and Γ(t) measures the total energy
in the volume r ≤ Reff in units of the energy imparted to the entire system by the initial perturbation. Note
that v̂(Reff , t) is measured in units of the magnitude of the initial velocity perturbation. See text for details.
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Figure 13. Similar to Figure 12 but for [ρi/ρe,Λ/Reff ] = [100, 20]. The steepness parameter is fixed at
µ = 1.5, while a number of values are examined for L/Reff as labeled. See text for details.
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Figure 14. Dependence of the critical (L/Reff)c on the critical dimensionless amplitude Ac for a number
of Λ/Reff as labeled. The combination [ρi/ρe, µ] is fixed at [100, 1.5]. For a given Λ/Reff , a loop with L/Reff

larger (smaller) than (L/Reff)c yields a v̂(Reff , t) for which the maximum amplitude in the periodic stage
is smaller (larger) than Ac when measured in units of the magnitude of the initial velocity perturbation.
The horizontal dash-dotted line represents the expectation within the ER83 framework ((L/Reff)ER) for a
piece-wise uniform loop where the equilibrium density attains ρi for r ≤ Reff but ρe otherwise. Evanescent
modes are not relevant when L/Reff < (L/Reff)ER in this framework. See text for details.


